Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Vaccine ; 42(3): 689-700, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38145911

RESUMEN

In an effort to develop efficient vaccine formulations, the use of ordered mesoporous silica (SBA-15) as an antigen carrier has been investigated. SBA-15 has required properties such as high surface area and pore volume, including narrow pore size distribution to protect antigens inside its matrix. This study aimed to examine the impact of solvent removal methods, specifically freeze-drying and evaporation on the intrinsic properties of an immunogenic complex. The immunogenic complexes, synthesized and incorporated with BSA, were characterized by various physicochemical techniques. Small Angle X-ray Scattering measurements revealed the characteristic reflections associated to pure SBA-15, indicating the preservation of the silica mesostructured following BSA incorporation and the formation of BSA aggregates within the macropore region. Nitrogen Adsorption Isotherm measurements demonstrated a decrease in surface area and pore volume for all samples, indicating that the BSA was incorporated into the SBA-15 matrix. Fluorescence spectroscopy evidenced that the tryptophan residues in BSA inside SBA-15 or in solution displayed similar spectra, showing the preservation of the aromatic residues' environment. The Circular Dichroism spectra of BSA in both conditions suggest the preservation of its native secondary structure after the encapsulation process. The immunogenic analysis with the detection of anti-BSA IgG did not give any significant difference between the non-dried, freeze-dried or evaporated groups. However, all groups containing BSA and SBA-15 showed results almost three times higher than the groups with pure BSA (control group). These facts indicate that none of the BSA incorporation methods interfered with the immunogenicity of the complex. In particular, the freeze-dried process is regularly used in the pharmaceutical industry, therefore its adequacy to produce immunogenic complexes was proved Furthermore, the results showed that SBA-15 increased the immunogenic activity of BSA.


Asunto(s)
Dióxido de Silicio , Vacunas , Dióxido de Silicio/química
2.
Int J Pharm ; 646: 123420, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37778514

RESUMEN

Crotamine is a highly cationic polypeptide first isolated from South American rattlesnake venom, which exhibits affinity for acidic lysosomal vesicles and proliferating cells. This cationic nature is pivotal for its in vitro cytotoxicity and in vivo anticancer actions. This study aimed to enhance the antitumor efficacy of crotamine by associating it with the mesoporous SBA-15 silica, known for its controlled release of various chemical agents, including large proteins. This association aimed to mitigate the toxic effects while amplifying the pharmacological potency of several compounds. Comprehensive characterization, including transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential analysis, confirmed the successful association of crotamine with the non-toxic SBA-15 nanoparticles. The TEM imaging revealed nanoparticles with a nearly spherical shape and variations in uniformity upon crotamine association. Furthermore, DLS showed a narrow unimodal size distribution, emphasizing the formation of small aggregates. Zeta potential measurements indicated a distinct shift from negative to positive values upon crotamine association, underscoring its effective adsorption onto SBA-15. Intraperitoneal or oral administration of crotamine:SBA-15 in a murine melanoma model suggested the potential to reduce the frequency of crotamine doses without compromising efficacy. Interestingly, while the oral route enhanced the antitumor efficacy of crotamine, pH-dependent release from SBA-15 was observed. Thus, associating crotamine with SBA-15 could reduce the overall required dose to inhibit solid tumor growth, bolstering the prospect of crotamine as a potent anticancer agent.


Asunto(s)
Antineoplásicos , Venenos de Crotálidos , Melanoma , Animales , Ratones , Modelos Animales de Enfermedad , Antineoplásicos/farmacología , Antineoplásicos/química , Venenos de Crotálidos/química , Venenos de Crotálidos/farmacología
3.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37047564

RESUMEN

Mycoplasma hyopneumoniae is a difficult-to-control bacterium since commercial vaccines do not prevent colonization and excretion. The present study aimed to evaluate the performance of an orally administered vaccine composed of antigens extracted from Mycoplasma hyopneumoniae and incorporated into mesoporous silica (SBA-15), which has an adjuvant-carrier function, aiming to potentiate the action of the commercial intramuscular vaccine. A total of 60 piglets were divided into four groups (n = 15) submitted to different vaccination protocols as follows, Group 1: oral SBA15 + commercial vaccine at 24 days after weaning, G2: oral vaccine on the third day of life + vaccine commercial vaccine at 24 days, G3: commercial vaccine at 24 days, and G4: commercial vaccine + oral vaccine at 24 days. On the first day, the piglets were weighed and, from the third day onwards, submitted to blood collections for the detection and quantification of anti-Mycoplasma hyopneumoniae IgG. Nasal swabs were collected to monitor IgA by ELISA, and oropharyngeal swabs were used to assess the bacterial load by qPCR. Biological samples were collected periodically from the third day of life until the 73rd day. At 41 days of life, 15 individuals of the same age, experimentally challenged with an inoculum containing M. hyopneumoniae, were co-housed with the animals from groups (1 to 4) in a single pen to increase the infection pressure during the nursery period. At 73 days, all piglets were euthanized, and lungs were evaluated by collecting samples for estimation of bacterial load by qPCR. Quantitative data obtained from physical parameters and laboratory investigation were analyzed by performing parametric or non-parametric statistical tests. Results indicate that animals from G2 showed smaller affected lung areas compared to G3. Animals from G2 and G4 had a low prevalence of animals shedding M. hyopneumoniae at 61 days of age. Additionally, no correlation was observed between lung lesions and M. hyopneumoniae load in lung and BALF samples in animals that received the oral vaccine, while a strong correlation was observed in other groups. In the present study, evidence points to the effectiveness of the oral vaccine developed for controlling M. hyopneumoniae in pig production under field conditions.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Porcinos , Animales , Neumonía Porcina por Mycoplasma/prevención & control , Neumonía Porcina por Mycoplasma/microbiología , Adyuvantes de Vacunas , Vacunas Bacterianas , Dióxido de Silicio
4.
Res Vet Sci ; 158: 141-150, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37004428

RESUMEN

Mycoplasma hyopneumoniae, the main etiological agent of Porcine Enzootic Pneumonia, is widely spread in swine production worldwide. Its prevention is of great interest for the productive system, since its colonization in the lung tissue leads to intense production losses. This study aimed to compare the M. hyopneumoniae shedding and acute-phase response in 30 pigs submitted to different vaccination protocols: an experimental oral vaccine using a nanostructured mesoporous silica (SBA-15) as adjuvant (n = 10); an intramuscular commercially available vaccine at 24 days of age (n = 10); and a control group (n = 10) following experimental challenge with M. hyopneumoniae. Laryngeal and nasal swabs were collected weekly and oral fluids were collected at 7, 10, 14, 17, 23, 28, 35, 42, and 49 days post-infection to monitor pathogen excretion by qPCR. Nasal swabs were also used to detect anti-M. hyopneumoniae IgA by ELISA. Blood samples were collected for monitoring acute phase proteins. The antibody response was observed in both immunized groups seven days after vaccination, while the control group became positive for this immunoglobulin at 4 weeks after challenge. Lung lesion score was similar in the immunized groups, and lower than that observed in the control. SBA-15-adjuvanted oral vaccine provided immunological response, decreased shedding of M. hyopneumoniae and led to mucosal protection confirmed by the reduced pulmonary lesions. This study provides useful data for future development of vaccines against M. hyopneumoniae.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Porcinos , Animales , Inmunidad Mucosa , Vacunas Bacterianas , Neumonía Porcina por Mycoplasma/prevención & control , Dióxido de Silicio
5.
Sci Rep ; 11(1): 22377, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789792

RESUMEN

Mycoplasma (M.) hyopneumoniae is the main pathogen of porcine enzootic pneumonia (PEP). Its controlling is challenging, and requires alternative strategies. This study aimed to develop an oral vaccine against M. hyopneumoniae using a nanostructured mesoporous silica (SBA-15) as an adjuvant, and compare its effect with an intramuscular (IM) commercial vaccine (CV). Fifty 24 day-old M. hyopneumoniae-free piglets composed five equal groups for different immunization protocols, consisting of a CV and/or oral immunization (OI). Control piglets did not receive any form of immunization. All piglets were challenged with M. hyopneumoniae strain 232 on D49 by tracheal route. IgA antibody response in the respiratory tract, bacterial shedding and serum IgG were evaluated. The piglets were euthanized on 28 (D77) and 56 (D105) days post-infection. Lung lesions were macroscopically evaluated; lung fragments and bronchoalveolar fluid (BALF) were collected for estimation of bacterial loads by qPCR and/or histopathology examination. All immunization protocols induced reduction on Mycoplasma-like macroscopic lung lesions. IgA Ab responses anti-M. hyopneumoniae, the expression of IL-4 cytokine and a lower expression of IL-8 were induced by CV and OI vaccines, while IgG was induced only by CV. Oral immunization using silica as a carrier-adjuvant can be viable in controlling M. hyopneumoniae infection.


Asunto(s)
Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/inmunología , Mycoplasma hyopneumoniae/inmunología , Neumonía Porcina por Mycoplasma/prevención & control , Adyuvantes Inmunológicos , Administración Oral , Animales , Biopsia , Líquido del Lavado Bronquioalveolar/inmunología , Citocinas/metabolismo , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Inmunohistoquímica , Pulmón/inmunología , Pulmón/microbiología , Pulmón/patología , Mycoplasma hyopneumoniae/clasificación , Mycoplasma hyopneumoniae/genética , Neumonía Porcina por Mycoplasma/microbiología , Neumonía Porcina por Mycoplasma/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Dióxido de Silicio , Porcinos , Resultado del Tratamiento , Vacunación/métodos
6.
Front Immunol ; 11: 591563, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193433

RESUMEN

Crotoxin (CTX), the main neurotoxin from Crotalus durissus terrificus snake venom, has anti-inflammatory, immunomodulatory and antinociceptive activities. However, the CTX-induced toxicity may compromise its use. Under this scenario, the use of nanoparticle such as nanostructured mesoporous silica (SBA-15) as a carrier might become a feasible approach to improve CTX safety. Here, we determined the benefits of SBA-15 on CTX-related neuroinflammatory and immunomodulatory properties during experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis that replicates several histopathological and immunological features observed in humans. We showed that a single administration of CTX:SBA-15 (54 µg/kg) was more effective in reducing pain and ameliorated the clinical score (motor impairment) in EAE animals compared to the CTX-treated EAE group; therefore, improving the disease outcome. Of interest, CTX:SBA-15, but not unconjugated CTX, prevented EAE-induced atrophy and loss of muscle function. Further supporting an immune mechanism, CTX:SBA-15 treatment reduced both recruitment and proliferation of peripheral Th17 cells as well as diminished IL-17 expression and glial cells activation in the spinal cord in EAE animals when compared with CTX-treated EAE group. Finally, CTX:SBA-15, but not unconjugated CTX, prevented the EAE-induced cell infiltration in the CNS. These results provide evidence that SBA-15 maximizes the immunomodulatory and anti-inflammatory effects of CTX in an EAE model; therefore, suggesting that SBA-15 has the potential to improve CTX effectiveness in the treatment of MS.


Asunto(s)
Crotoxina/administración & dosificación , Encefalomielitis Autoinmune Experimental/etiología , Encefalomielitis Autoinmune Experimental/metabolismo , Inmunomodulación/efectos de los fármacos , Dióxido de Silicio , Nanomedicina Teranóstica , Animales , Biomarcadores , Biopsia , Crotoxina/efectos adversos , Crotoxina/química , Citocinas/metabolismo , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Encefalomielitis Autoinmune Experimental/diagnóstico , Femenino , Ratones , Músculo Esquelético/inmunología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Índice de Severidad de la Enfermedad , Médula Espinal/inmunología , Médula Espinal/metabolismo , Médula Espinal/patología , Evaluación de Síntomas
7.
Sci Rep ; 10(1): 18513, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33116174

RESUMEN

Nuclear distribution element-like 1 (NDEL1) enzyme activity is important for neuritogenesis, neuronal migration, and neurodevelopment. We reported previously lower NDEL1 enzyme activity in blood of treated first episode psychosis and chronic schizophrenia (SCZ) compared to healthy control subjects, with even lower activity in treatment resistant chronic SCZ patients, implicating NDEL1 activity in SCZ. Herein, higher NDEL1 activity was observed in the blood and several brain regions of a validated animal model for SCZ at baseline. In addition, long-term treatment with typical or atypical antipsychotics, under conditions in which SCZ-like phenotypes were reported to be reversed in this animal model for SCZ, showed a significant NDEL1 activity reduction in blood and brain regions which is in line with clinical data. Importantly, these results support measuring NDEL1 enzyme activity in the peripheral blood to predict changes in NDEL1 activity in the CNS. Also, acute administration of psychostimulants, at levels reported to induce SCZ-like phenotype in normal rat strains, increased NDEL1 enzyme activity in blood. Therefore, alterations in NDEL1 activity after treatment with antipsychotics or psychostimulants may suggest a possible modulation of NDEL1 activity secondary to neurotransmission homeostasis and provide new insights into the role of NDEL1 in SCZ pathophysiology.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/fisiología , Esquizofrenia/metabolismo , Animales , Antipsicóticos/farmacología , Encéfalo/metabolismo , Estimulantes del Sistema Nervioso Central/uso terapéutico , Clozapina/farmacología , Cisteína Endopeptidasas/sangre , Haloperidol/farmacología , Hipocampo/metabolismo , Masculino , Núcleo Accumbens/metabolismo , Corteza Prefrontal/metabolismo , Trastornos Psicóticos/tratamiento farmacológico , Ratas , Ratas Endogámicas SHR , Ratas Wistar , Esquizofrenia/fisiopatología
8.
Sci Rep ; 9(1): 6106, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30988384

RESUMEN

Developing a technology that enables oral vaccines to work efficiently remains a considerable effort since a number of difficulties must be addressed. The key objective being to ensure the safe passage through the harsh conditions within the gastrointestinal tract, promoting delivery that induces enhanced immune response. In the particular case of hepatitis B, the oral formulation in the nanostructured silica SBA-15 is a viable approach. As a result of its porous structure, low toxicity and structural stability, SBA-15 is capable to protect and release the hepatitis B surface antigen (HBsAg), used in the vaccination scheme, at the desired destination. Furthermore, when compared to the currently used injection based delivery method, better or similar antibody response has been observed. However, information about the organisation of the antigen protein remains unknown. For instance, HBsAg is too large to enter the 10 nm ordered mesopores of SBA-15 and has a tendency to agglomerate when protected by the delivery system. Here we report on the pH dependence of HBsAg aggregation in saline solution investigated using small angle X-rays scattering that resulted in an optimisation of the encapsulation conditions. Additionally, X-ray microscopy combined with neutron and X-ray tomography provided full 3D information of the HBsAg clustering (i.e. agglomeration) inside the SBA-15 macropores. This method enables the visualisation of the organisation of the antigen in the interior of the delivery system, where agglomerated HBsAg coexists with its immunological effective uniformly distributed counterpart. This new approach, to be taken into account while preparing the formulation, can greatly help in the understanding of clinical studies and advance new formulations.


Asunto(s)
Portadores de Fármacos/química , Antígenos de Superficie de la Hepatitis B/química , Vacunas contra Hepatitis B/química , Nanoestructuras/ultraestructura , Vacunación/métodos , Administración Oral , Química Farmacéutica , Composición de Medicamentos/métodos , Liberación de Fármacos , Dispersión Dinámica de Luz , Tracto Gastrointestinal/química , Hepatitis B/prevención & control , Antígenos de Superficie de la Hepatitis B/administración & dosificación , Antígenos de Superficie de la Hepatitis B/inmunología , Vacunas contra Hepatitis B/administración & dosificación , Vacunas contra Hepatitis B/inmunología , Vacunas contra Hepatitis B/farmacocinética , Concentración de Iones de Hidrógeno , Imagenología Tridimensional , Nanoestructuras/química , Porosidad , Agregado de Proteínas , Dispersión del Ángulo Pequeño , Dióxido de Silicio/química , Propiedades de Superficie , Tomografía por Rayos X , Difracción de Rayos X
9.
Sci Rep ; 7(1): 16488, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29184147

RESUMEN

The prostate secretes immunoglobulin (Ig) A (IgA) and IgG; however, how immunoglobulins reach the secretion, where the plasma cells are located, whether immunoglobulins are antigen-specific and where activation of the adaptive response occurs are still unknown. Immune cells, including CD45RA+ cells, were scattered in the stroma and not organized mucosae-associated lymphoid-tissue. IgA (but not IgG) immunostaining identified stromal plasma cells and epithelial cells in non-immunized rats. Injected tetramethylrhodamine-IgA transcytosed the epithelium along with polymeric immunoglobulin receptor. Oral immunization with ovalbumin/mesopourous SBA-15 silica adjuvant resulted in more stromal CD45RA+/IgA+ cells, increased content of ovalbumin-specific IgA and IgG, and the appearance of intraepithelial CD45RA+/IgG+ cells. An increased number of dendritic cells that cooperate in other sites with transient immunocompetent lymphocytes, and the higher levels of interleukin-1ß, interferon-γ and transforming growth factor-ß, explain the levels of specific antibodies. Nasal immunization produced similar results except for the increase in dendritic cells. This immunomodulatory strategy seems useful to boost immunity against genitourinary infections and, perhaps, cancer.


Asunto(s)
Inmunoglobulina A Secretora/biosíntesis , Inmunoglobulina A Secretora/inmunología , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/inmunología , Próstata/inmunología , Adyuvantes Inmunológicos , Animales , Biomarcadores , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Epitelio/inmunología , Epitelio/metabolismo , Inmunización , Inmunohistoquímica , Inmunofenotipificación , Tejido Linfoide/citología , Tejido Linfoide/inmunología , Tejido Linfoide/metabolismo , Masculino , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Próstata/metabolismo , Ratas , Dióxido de Silicio/administración & dosificación , Dióxido de Silicio/inmunología
10.
Nanomedicine ; 12(8): 2241-2250, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27339784

RESUMEN

Due to its physicochemical properties, nanostructured mesoporous SBA-15 silica shows great potential as a vaccine adjuvant. This study evaluated the capacity of SBA-15 to encapsulate/adsorb the recombinant purified HBsAg from the Hepatitis B virus and the immunoresponsiveness of mice orally immunized with HBsAg inside SBA-15. A simulation of small angle X-ray scattering experimental results, together with the nitrogen adsorption isotherms data, allowed to determine the appropriate mass ratio of HBsAg:SBA-15, indicating antigen encapsulation into SBA-15 macroporosity. This was also evaluated by bicinchoninic acid assay and gel electrophoresis. The recruitment of inflammatory cells, an increase in production of specific antibodies, and the non-influence of silica on TH1 or TH2 polarization were observed after oral immunization. Besides, SBA-15 enhanced the phagocytosis of ovalbumin by dendritic cells, an important key to prove how this adjuvant works. Thus, it seems clear that the nanostructured SBA-15 is an effective and safe adjuvant for oral immunizations.


Asunto(s)
Vacunas contra Hepatitis B/administración & dosificación , Inmunización/métodos , Dióxido de Silicio , Animales , Antígenos de Superficie de la Hepatitis B , Ratones , Vacunación
11.
Biochem Pharmacol ; 96(3): 202-15, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26047849

RESUMEN

Bradykinin-potentiating peptides (BPPs) from the South American pit viper snake venom were the first natural inhibitors of the human angiotensin I-converting enzyme (ACE) described. The pioneer characterization of the BPPs precursor from the snake venom glands by our group showed for the first time the presence of the C-type natriuretic peptide (CNP) in this same viper precursor protein. The confirmation of the BPP/CNP expression in snake brain regions correlated with neuroendocrine functions stimulated us to pursue the physiological correlates of these vasoactive peptides in mammals. Notably, several snake toxins were shown to have endogenous physiological correlates in mammals. In the present work, we expressed in bacteria the BPPs domain of the snake venom gland precursor protein, and this purified recombinant protein was used to raise specific polyclonal anti-BPPs antibodies. The correspondent single protein band immune-recognized in adult rat brain cytosol was isolated by 2D-SDS/PAGE and/or HPLC, before characterization by MS fingerprint analysis, which identified this protein as superoxide dismutase (SOD, EC 1.15.1.1), a classically known enzyme with antioxidant activity and important roles in the blood pressure modulation. In silico analysis showed the exposition of the BPP-like peptide sequences on the surface of the 3D structure of rat SOD. These peptides were chemically synthesized to show the BPP-like biological activities in ex vivo and in vivo pharmacological bioassays. Taken together, our data suggest that SOD protein have the potential to be a source for putative BPP-like bioactive peptides, which once released may contribute to the blood pressure control in mammals.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/química , Antihipertensivos/química , Hipertensión/tratamiento farmacológico , Precursores de Proteínas/química , Superóxido Dismutasa/química , Teprotido/química , Secuencia de Aminoácidos , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Anticuerpos/química , Antihipertensivos/metabolismo , Antihipertensivos/farmacología , Presión Sanguínea/efectos de los fármacos , Bothrops , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Cobayas , Frecuencia Cardíaca/efectos de los fármacos , Hipertensión/genética , Hipertensión/metabolismo , Hipertensión/patología , Masculino , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Péptido Natriurético Tipo-C/química , Péptido Natriurético Tipo-C/metabolismo , Péptido Natriurético Tipo-C/farmacología , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Precursores de Proteínas/farmacología , Ratas , Ratas Endogámicas SHR , Ratas Wistar , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/farmacología , Teprotido/metabolismo , Teprotido/farmacología
12.
Hum Vaccin Immunother ; 10(10): 2864-74, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25483465

RESUMEN

E. coli O111 strains are responsible for outbreaks of blood diarrhea and hemolytic uremic syndrome throughout the world. Because of their phenotypic variability, the development of a vaccine against these strains which targets an antigen that is common to all of them is quite a challenge. Previous results have indicated, however, that O111 LPS is such a candidate, but its toxicity makes LPS forbidden for human use. To overcome this problem, O111 polysaccharides were conjugated either to cytochrome C or to EtxB (a recombinant B subunit of LT) as carrier proteins. The O111-cytochrome C conjugate was incorporated in silica SBA-15 nanoparticles and administered subcutaneously in rabbits, while the O111-EtxB conjugate was incorporated in Vaxcine(TM), an oil-based delivery system, and administered orally in mice. The results showed that one year post-vaccination, the conjugate incorporated in silica SBA-15 generated antibodies in rabbits able to inhibit the adhesion of all categories of O111 E. coli to epithelial cells. Importantly, mice immunized orally with the O111-EtxB conjugate in Vaxcine(TM) generated systemic and mucosal humoral responses against all categories of O111 E. coli as well as antibodies able to inhibit the toxic effect of LT in vitro. In summary, the results obtained by using 2 different approaches indicate that a vaccine that targets the O111 antigen has the potential to prevent diarrhea induced by O111 E. coli strains regardless their mechanism of virulence. They also suggest that a conjugated vaccine that uses EtxB as a carrier protein has potential to combat diarrhea induced by ETEC.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Portadores de Fármacos/uso terapéutico , Infecciones por Escherichia coli/prevención & control , Escherichia coli/inmunología , Polisacáridos Bacterianos/inmunología , Vacunas Conjugadas/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Adhesión Bacteriana/inmunología , Toxinas Bacterianas/química , Toxinas Bacterianas/inmunología , Línea Celular , Citocromos c/química , Citocromos c/inmunología , Endotoxinas/inmunología , Enterotoxinas/química , Enterotoxinas/inmunología , Escherichia coli/clasificación , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/inmunología , Femenino , Síndrome Hemolítico-Urémico/inmunología , Síndrome Hemolítico-Urémico/microbiología , Síndrome Hemolítico-Urémico/prevención & control , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Nanopartículas/uso terapéutico , Conejos , Dióxido de Silicio/química , Vacunas Conjugadas/uso terapéutico
13.
PLoS Negl Trop Dis ; 6(2): e1531, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22389740

RESUMEN

BACKGROUND: The caterpillar of the moth Premolis semirufa (Lepidoptera: Arctiidae), commonly named Pararama, is endemic of the Amazon basin. Accidental contact with these caterpillar bristles causes local symptoms such as intense heat, pain, edema and itching which last for three to seven days; however, after multiples contacts, it may induce joint-space narrowing and bone alteration, as well as degeneration of the articular cartilage and immobilization of the affected joints. Specific treatment for this disease does not exist, but corticosteroids are frequently administered. Despite of the public health hazard of Premolis semirufa caterpillar poisoning, little is known about the nature of the toxic components involved in the induction of the pathology. METHODOLOGY/PRINCIPAL FINDINGS: Here we have investigated the biological and immunochemical characteristics of the caterpillar's bristles components. Analysis of the bristles extract in in vitro assays revealed the presence of proteolytic and hyaluronidase activities but no phospholipase A(2) activity. In vivo, it was observed that the bristles extract is not lethal but can induce an intense inflammatory process, characterized by the presence of neutrophils in the paw tissues of injected mice. Furthermore, the bristles components stimulated an intense and specific antibody response but autoantibodies such as anti-DNA or anti-collagen type II were not detected. CONCLUSION: The results suggest that Premolis semirufa caterpillar bristles secretion contains a mixture of different enzymes that may act together in the generation and development of the clinical manifestations of the Pararama envenomation. Moreover, the high immunogenicity of the caterpillar bristles components, as shown by the generation of high antibody titers, may also contribute to the induction and establishment of the inflammatory disease.


Asunto(s)
Lepidópteros , Toxinas Biológicas/análisis , Toxinas Biológicas/inmunología , Ponzoñas/enzimología , Ponzoñas/toxicidad , Animales , Extremidades/patología , Inflamación/inducido químicamente , Masculino , Ratones , Ratones Endogámicos BALB C , Ponzoñas/inmunología
14.
Curr Drug Deliv ; 9(6): 637-44, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22283655

RESUMEN

Liposomes have been used since the 1970's to encapsulate drugs envisaging enhancement in efficacy and therapeutic index, avoidance of side effects and increase in the encapsulated agent stability. The major problem when encapsulating snake venoms is the liposomal membrane instability caused by venom phospholipases. Here the results obtained encapsulating Crotalus durissimus terrificus and a pool of Bothropic venoms within liposomes (LC and LB, respectively) used to produce anti-venom sera are presented. The strategy was to modify the immunization protocol to enhance antibody production and to minimize toxic effects by encapsulating inactivated venoms within stabilized liposomes. Chemically modified venoms were solubilized in a buffer containing an inhibitor and a chelating agent. The structures of the venoms were analyzed by UV, CD spectroscopy and ELISA. In spite of the differences in the helical content between natural and modified venoms, they were recognized by horse anti-sera. To maintain long-term stability, mannitol was used as a cryoprotectant. The encapsulation efficiencies were 59 % (LB) and 99 % (LC), as followed by filtration on Sephacryl S1000. Light scattering measurements led us to conclude that both, LB (119 ±47 nm) and LC (147±56 nm) were stable for 22 days at 4 °C, even after lyophilization. Genetically selected mice and mixed breed horses were immunized with these formulations. The animals did not show clinical symptoms of venom toxicity. Both, LB and LC enhanced by at least 30 % the antibody titers 25 days after injection and total IgG titers remained high 91 days after immunization. The liposomal formulation clearly exhibited adjuvant properties.


Asunto(s)
Antivenenos/inmunología , Venenos de Crotálidos/química , Venenos de Crotálidos/inmunología , Animales , Bothrops , Venenos de Crotálidos/administración & dosificación , Crotalus , Caballos , Inmunización , Liposomas , Ratones , Fosfolípidos/química
15.
Open Microbiol J ; 5: 83-90, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21804903

RESUMEN

This study compared the proteomic profile of outer membrane proteins (OMPs) from one strain of atypical enteropathogenic Escherichia coli (aEPEC) and one of typical EPEC (tEPEC). The OMPs fractions were obtained using sarcosine extraction, and analyzed by one- and two-dimensional gel electrophoresis (1DE and 2DE, respectively). The 1DE OMPs analysis of typical and atypical EPEC evidenced similar patterns; however, the 2DE OMP profile from the aEPEC revealed more protein spots in the 40- to 70-kDa region. 2DE image analysis identified 159 protein spots in both strains whereas 53 protein spots were observed only in tEPEC and 128 were observed only in aEPEC. Remarkably, 41.5% of aEPEC spots showed higher levels of expression compared to tEPEC, some of which with two, others four or even five times more. Twenty-four selected spots were identified using MALDI-TOF mass spectrometry and they corresponded to proteins involved in cell structure and metabolism, as well as in gene regulation. Some of these proteins showed similarity with proteins identified in other E. coli pathotypes. Besides, the differential expression of some proteins in aEPEC may suggest that it could be related to their features that ascertain the adaptation to distinct environments and the worldwide spread distribution of these pathogens.

16.
Opean microbiol. j ; 5(supl.1): 83-90, 2011.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1065033

RESUMEN

This study compared the proteomic profile of outer membrane proteins (OMPs) from one strain of atypicalenteropathogenic Escherichia coli (aEPEC) and one of typical EPEC (tEPEC). The OMPs fractions were obtained using sarcosine extraction, and analyzed by one- and two-dimensional gel electrophoresis (1DE and 2DE, respectively). The 1DE OMPs analysis of typical and atypical EPEC evidenced similar patterns; however, the 2DE OMP profile from the aEPEC revealed more protein spots in the 40- to 70-kDa region. 2DE image analysis identified 159 protein spots in bothstrains whereas 53 protein spots were observed only in tEPEC and 128 were observed only in aEPEC. Remarkably, 41.5% of aEPEC spots showed higher levels of expression compared to tEPEC, some of which with two, others four or even five times more. Twenty-four selected spots were identified using MALDI-TOF mass spectrometry and they corresponded to proteins involved in cell structure and metabolism, as well as in gene regulation. Some of these proteins showed similarity with proteins identified in other E. coli pathotypes. Besides, the differential expression of some proteins in aEPEC may suggest that it could be related to their features that ascertain the adaptation to distinct environments and the worldwidespread distribution of these pathogens.


Asunto(s)
Escherichia coli Enteropatógena/clasificación , Escherichia coli Enteropatógena/crecimiento & desarrollo , Escherichia coli Enteropatógena/metabolismo , Proteómica , Proteínas de la Membrana Bacteriana Externa/análisis , Proteínas de la Membrana Bacteriana Externa/aislamiento & purificación
17.
Clín. méd. H.C.C ; 17(11): 1772-1780, Nov.2010.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1062120

RESUMEN

A promising approach to developing a vaccine against O111 strains of diarrheagenic Escherichia coli thatexhibit different mechanisms of virulence is to target either the core or the polysaccharide chain (O antigen)of their lipopolysaccharide (LPS). However, due to structural variations found in both these LPS components,to use them as antigen targets for vaccination, it is necessary to formulate a vaccine able to induce a humoralimmune response that can recognize all different variants found in E. coli O111 strains. In this study, it was demonstrated that, despite differences in composition of oligosaccharide repeat units between O111ab and O111ac LPS subtypes, antibodies against one O111 subtype can recognize and inhibit the adhesion to human epithelial cells of all categories of O111 E. coli(enteropathogenic E. coli [EPEC], enterohemorrhagic E. coli [EHEC], and enteroaggregative E. coli [EAEC]) strains regardless of the nature of their flagellar antigens, mechanisms of virulence, or O111 polysaccharide subtypes. These antibodies were also able to increase the clearance of different strains of O111 E. coli by macrophages. PCR analyses of the pathways involved in O111 LPS core biosynthesis showed that all EAEC strains have core type R2, whereas typical EPEC and EHEC havecore type R3. In contrast, atypical EPEC strains have core types R2 and R3. In summary, the results presentedherein indicate that the O111 polysaccharide and LPS core types R2 and R3 are antigen targets for panspecific immunotherapy against all categories of O111 E. coli.


Asunto(s)
Masculino , Conejos , Escherichia coli/inmunología , Escherichia coli/aislamiento & purificación , Lipopolisacáridos/análisis , Lipopolisacáridos/inmunología , Lipopolisacáridos/uso terapéutico , Inmunoterapia/métodos , Inmunoterapia , Reacción en Cadena de la Polimerasa/métodos
18.
Vaccine ; 28(50): 7829-36, 2010 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-20937318

RESUMEN

In 2006, the first report of a nanostructured material as adjuvant was described establishing the effectiveness of the ordered mesoporous SBA-15 silica as an immune adjuvant. The present study evaluated the SBA-15 capacity to modulate the immune responsiveness of High and Low responder mice immunized with BSA encapsulated/adsorbed in SBA-15 by the intramuscular or oral route and the adjuvant effect was compared with the responsiveness induced by BSA in aluminum hydroxide salts or emulsified in Incomplete Freund adjuvant. These results demonstrate the ability of the non-toxic SBA-15 nanoparticles to increase the immunogenicity and repair the responsiveness of the constitutively low responder individuals inducing both the IgG2a and the IgG1 isotypes, independently of the immune cell committed and conditioning the low phenotype. This new adjuvant may reveal novel therapeutic targets for immune modulation and vaccine design.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Formación de Anticuerpos , Macrófagos/inmunología , Dióxido de Silicio/farmacología , Adsorción , Hidróxido de Aluminio/farmacología , Animales , Células Cultivadas , Femenino , Adyuvante de Freund/farmacología , Inmunoglobulina G/sangre , Lípidos/farmacología , Ratones , Nanopartículas , Fagocitosis , Albúmina Sérica Bovina/inmunología
19.
Clin Vaccine Immunol ; 17(11): 1772-80, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20861324

RESUMEN

A promising approach to developing a vaccine against O111 strains of diarrheagenic Escherichia coli that exhibit different mechanisms of virulence is to target either the core or the polysaccharide chain (O antigen) of their lipopolysaccharide (LPS). However, due to structural variations found in both these LPS components, to use them as antigen targets for vaccination, it is necessary to formulate a vaccine able to induce a humoral immune response that can recognize all different variants found in E. coli O111 strains. In this study, it was demonstrated that, despite differences in composition of oligosaccharide repeat units between O111ab and O111ac LPS subtypes, antibodies against one O111 subtype can recognize and inhibit the adhesion to human epithelial cells of all categories of O111 E. coli (enteropathogenic E. coli [EPEC], enterohemorrhagic E. coli [EHEC], and enteroaggregative E. coli [EAEC]) strains regardless of the nature of their flagellar antigens, mechanisms of virulence, or O111 polysaccharide subtypes. These antibodies were also able to increase the clearance of different strains of O111 E. coli by macrophages. PCR analyses of the pathways involved in O111 LPS core biosynthesis showed that all EAEC strains have core type R2, whereas typical EPEC and EHEC have core type R3. In contrast, atypical EPEC strains have core types R2 and R3. In summary, the results presented herein indicate that the O111 polysaccharide and LPS core types R2 and R3 are antigen targets for panspecific immunotherapy against all categories of O111 E. coli.


Asunto(s)
Antígenos Bacterianos/inmunología , Infecciones por Escherichia coli/prevención & control , Vacunas contra Escherichia coli/inmunología , Lipopolisacáridos/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Adhesión Bacteriana/inmunología , Línea Celular , Células Epiteliales/microbiología , Infecciones por Escherichia coli/inmunología , Humanos , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Conejos
20.
Am J Trop Med Hyg ; 82(4): 678-82, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20348518

RESUMEN

Bordetella pertussis is a gram-negative bacillus that causes the highly contagious disease known as pertussis or whooping cough. Antibody response in children may vary depending on the vaccination schedule and the product used. In this study, we have analyzed the antibody response of cellular pertussis vaccinated children against B. pertussis strains and their virulence factors, such as pertussis toxin, pertactin, and filamentous hemagglutinin. After the completion of the immunization process, according to the Brazilian vaccination program, children serum samples were collected at different periods of time, and tested for the presence of specific antibodies and antigenic cross-reactivity. Results obtained show that children immunized with three doses of the Brazilian whole-cell pertussis vaccine present high levels of serum antibodies capable of recognizing the majority of the components present in vaccinal and non-vaccinal B. pertussis strains and their virulence factors for at least 2 years after the completion of the immunization procedure.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Bordetella pertussis/inmunología , Inmunoglobulina G/sangre , Vacuna contra la Tos Ferina/inmunología , Tos Ferina/prevención & control , Brasil/epidemiología , Preescolar , Femenino , Humanos , Lactante , Masculino , Tos Ferina/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...